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ABSTRACT

This paper describes the speech recognition (STT) part
of the Interactive Systems Lab’s 2004 Meeting transcrip-
tion system, for the IPM (Individual Personal Microphone),
SDM (Single Distant Microphone), and MDM (Multiple
Distant Microphone) conditions; which was evaluated in
NIST’s RT-04S “Meeting” evaluation.

We compare the performance of our Broadcast News
and the most recent Switchboard system on the Meeting
data and compare both with the newly-trained meeting rec-
ognizer. Furthermore, we investigate the effects of auto-
matic segmentation on adaptation. Our best (post-evaluation)
Meeting system achieves a WER of 44.5% on the “MDM”
condition.

1. INTRODUCTION

In this paper, we present the Interactive Systems Lab’s most
recent speech-to-text system for “Meeting”-type speech, which
has evolved significantly over previous versions [1] and which
was evaluated in NIST’s RT-04S “Meeting” evaluation1. The
ISL system was submitted to the “ul” (unlimited run-time)
condition.

2. “MEETING” DATA

The system described in this paper is trained on 16kHz/
16bit quality audio and was newly trained using mostly the
recently released “Meeting” training data. We used paral-
lel recordings of both personal (head-set or lapel) micro-
phones and room microphones, which were placed on a
conference table which the meeting participant were seated
around, whenever possible.

1http://www.nist.gov/speech/tests/rt/rt2004/spring/
This site also contains further information about the data used in the ex-
periments presented

2.1. Training Data

Training data of all acoustic models in the ISL system con-
sisted of the “Meeting” training data (see table 1) merged
with 180h of existing Broadcast News data from the 1996
and 1997 training sets.

Corpus Duration Meetings Speakers Channels

CMU 11h 21 93 N/A
ICSI 72h 75 455 4HQ+2LQ
NIST 13h 15 77 7

Table 1. Meeting training data: all data sets contain a
variable number of personal microphone recordings (lapel/
head-set) in addition to the above number of distant micro-
phone recordings

A comprehensive description of each data set with record-
ing conditions and transcription conventions can be found in
the literature [2, 3, 4, 5]. Parts of the data have already been
used in experiments on segmentation and distant speech recog-
nition [6]. Note that we did not work on the “PDA” low
quality data in the ICSI portion of the training data.

2.2. Development and Test Data

The decoding experiments described in this paper were con-
ducted on the following data sets:

RT02 The RT-02 “Meeting” evaluation set, containining one
distant channel only ( 80min)

Dev The official RT-04S development test set, derived from
RT02, containing several distant channels ( 90min)

Eval The RT-04S evaluation set ( 90min)

For the Dev and Eval sets, the erratum concerning the
selection of the best channel for the NIST data has not been
applied, unless explicitely noted.



Each meeting has between 3 and 10 participants while
the number of distant channels recorded in parallel varied
between 1 (CMU data) and 10 (some LDC meetings).

For the distant microphone conditions, crosstalk regions
are labeled in the reference and these are excluded from
scoring. Also, personal-microphone recordings contain a
significant amount of cross-talk from non-primary speakers,
particularly for the CMU meetings, which were recorded
with consumer-grade equipment, to be as “real” as possible.

3. BASELINE EXPERIMENTS

All experiments described in this paper were run using ISL’s
Janus toolkit and the Ibis decoder [7, 8] in version 5.0, patch-
level 013.

Our first experiments were run with a speech recognizer
trained on BN96 training data, which has 2000 codebooks,
6000 distributions, a 42-dimensional feature space based
on MFCCs after LDA and global STC transforms [9] with
utterance-based CMS. The tri-gram language model was
trained on BN96. This system performed better on in-house
meeting data than our standard BN recognizer [10]. First-
pass decoding WER on NIST data is 68.4% or 62.8% with
VTLN, using both model-space and feature-space MLLR
reaches 59.9%.

Experiments with the “Switchboard” recognizer were
conducted with a simplified, 3-pass version of ISL’s system
described in [11]. This systems reaches a WER of 25.0% on
the RT-03S “Switchboard” test set. For these experiments,
speech was downsampled and passed through a telephony
filter. A first-pass decoding using completely unadapted
models without even VTLN on a single distant channel re-
sults in a word error rate of 64.2%, a system adapted with
both model-space and feature-space MLLR reaches 56.4%
WER.

Using cross-adaptation between the two systems (which
use different language models, dictionaries, and phone sets),
it was possible to reduce the error rate to 52.3%, using the
Switchboard system for the final pass. All the above ex-
periments were run with manual speaker segmentation and
clustering and show performance comparable to previous
systems [12].

4. AUTOMATIC SEGMENTATION

Speaker segmentation and clustering consists of identifying
who spoke when in a long meeting conversation. Given a
meeting audio, ideally, it will discover how many people are
involved in the meeting, and output clusters with each clus-
ter corresponding to an unique speaker. However in speech
recognition, the goal of speaker segmentation and clustering
is to serve speaker adaptation. Speaker adaptation concerns
more about regression of speakers, not strict classification

of speakers. So if two speakers sound reasonably indistin-
guishable, they can be considered as equal and grouped into
one cluster.

The speaker segmentation and clustering system used
for speech recognition (“T2”) is based on CMUseg0.5 [13].
Of this software package, we used the segmenter part and
added a hierarchical, agglomerative clustering algorithm to
group the segments into clusters. Therefore, we first trained
a Tied Gaussian Mixture Model (TGMM) based on the en-
tire speech segments. The GMM for each segment is gen-
erated by adapting the TGMM on the segment. The Gen-
eralized Likelihood Ratio (GLR) distance is computed be-
tween any two segments. At each clustering step, the two
segments with the smallest distance are merged. Bayesian
Information Criterion (BIC) is used as a stopping criterion
for clustering.

The speaker segmentation and clustering system for the
MDM condition contains two extra steps over the T2 sys-
tem: unification across multiple channels and speaker turn
detection in long segments. The speech recognition exper-
iments throughout this paper use the T2 system instead of
the MDM system, since unification and turn detection ini-
tially resulted in frequent speaker changes and therefore a
high fraction of very short utterances which were detrimen-
tal to speech recognition performance. The T2 segmenta-
tion is computed on the most central channel (as defined
before post-evaluation errata) per meeting only; also, seg-
ments longer than 15s were cut at positions where an initial
quick transcription pass generated noise or silence tokens
with a duration of more than 40ms.

Dataset Segmentation
T2 MDM

development set 50.26% 29.59%
evaluation set 52.54% 28.17%

Table 2. Speaker diarization error for the T2 and MDM
segmentation

For the IPM case, only segmentation is necessary. Op-
posed to the SDM/MDM case however, mis-segmented parts,
with no speech from the primary speaker of that microphone
result in insertion errors and lost segments in deletion errors
during STT scoring. To deal with this situation, we used
a completely different algorithm, which, in contrast to the
other segmentations, relies on activity detection instead of
speech detection.

For activity detection in personal microphone audio, each
of N channels is first segmented into 300ms non-overlapping
frames and preemphasized using a high-pass filter (1−z−1).
We then compute allN ·(N+1)

2 crosscorrelationsφi,j for each
pair of channels{i, j} and computeN quantitiesΞi =

∑
i 6=j

max φij
φii(0)

.



We declare the frame as speech for channeli if Ξi > 0.
Smoothing is applied independently for each channel over
single frame dropouts and padding is added to the beginning
and end of each hypothesized speech interval.

The ISL STT system used the following different seg-
mentation systems, which did also perform speaker cluster-
ing for the distant-speech cases:

IPM Used for the IPM (personal/ close-talking) system,
based on activity detection [14]

T2 A single-channel segmentation, also used for the eval-
uated MDM system, as the MDM segmentations avail-
able at the beginning of the evaluation period con-
tained a high degree of short sentences, which were
unsuitable for speech recognition

MDM A multi-channel segmentation based on a unification
of the available single-channel segmentations

A more detailed description of these can be found else-
where in these proceedings [15].

5. TRAINING

5.1. Acoustic Model Training

As a first step, we generated time-alignments and warping
factors for the close-talking part of three of the four data sets
(BN, CMU, ICSI, NIST) with the BN-based system men-
tioned above. We then re-trained the BN system with 2k
models on the separate data sets.

Set BN96/97 CMU ICSI NIST Merged

WER 67.5% 68.9% 67.2% N/A 66.7%%

Table 3. Re-training on the different data sets (2k code-
books, 6k distributions, 100k Gaussians); test on pre-release
of RT-04S development data (≈ RT-02 Meeting test data)

Two extra iterations of Viterbi training of the “ICSI”-
trained system on all channels of the ICSI distant micro-
phone data resulted in a WER of 62.5%. Employing feature
space normalization (constrained MLLR) [16] and VTLN
during testing only reaches 58.6%. As an alternative to
Viterbi training we performed a combination of speaker-
adaptive and channel-adaptive (SAT/CAT) training also us-
ing constrained MLLR, by estimating a normalization ma-
trix for every speaker and every recording channel. This
resulted in a word error rate of 54.5%, when testing this
system with VTLN and normalization matrices estimated
on the “ICSI” system.

As a next step, we re-trained the context decision tree
on the combined data sets, increased the model complexity

to 6k codebooks, 24k distributions,∼300k Gaussians while
also re-training the STC transform. Re-running the training
with these extra parameters, while also adding the NIST dis-
tance data reduced the error rate by an extra 3.5% absolute,
and the best performance was delivered by a system using
newly trained models alone.

The experiments reported so far were run and scored on
a pre-release of the official RT-04S development data set,
which could not accomodate the Multiple Distant Micro-
phone (MDM) condition. Due to changes to both transcripts
and data2, absolute numbers cannot be compared before and
after this point; due to recent errata, future numbers will also
be slightly off, quantitative assessments of different meth-
ods’ merits as presented here should however be unaffected
and valid.

5.2. Language Model Training

Language models were trained in analogy to the Switch-
board system. We trained a simple 3-gram LM and a 5-
gram LM with∼800 automatically introduced classes on a
mixture of the Switchboard and Meeting transcriptions and
also a 4-gram BN LM. All LMs were computed over a vo-
cabulary of∼47k words with an OOV rate of 0.6% on the
development set. For the first decoding passes only the 3-
gram LM was used, later decoding and CNC passes uses a
3-fold context dependent interpolation of all three LMs. The
perplexity on the development set of the 3-fold interpolated
LM was 112.

6. TESTS

All tests use a dictionary extended with vocabulary from the
meeting domain and the simple language model described
above for decoding unless stated otherwise. All models use
∼300k Gaussians with diagonal covariances organized in
24k distributions over 6k codebooks in a 42-dimensional
feature space trained as described above. Consensus lattice
processing (CLP) [17] and confusion network combination
(CNC) was also performed in later stages using the interpo-
lated language model.

6.1. Individual Personal Microphone (IPM) Condition

For the IPM condition we used a reduced version of our
Switchboard system, extended by some close talking Meet-
ing Systems. So the following acoustic models were tested:

PLAIN Merge-and-split training followed by Viterbi (2i)
on the Close-talking data, no VTLN

SAT ≡ PLAIN, but trained with VTLN

2Also published on the RT-04S web site



Tree6.8ms Our Tree6 Switchboard acoustic [11], decoded
with 8ms frame shift

Tree150.8msOur Tree150 Switchboard acoustic [11], cross-
adapted on Tree6, decoded with 8ms frame shift

SAT.8ms Cross-adapted on Tree6, decoded with 8ms frame
shift

Models Segmentation
Manual IPM-SEG

PLAIN 39.6% 43.6%
SAT 33.8% 38.8%
Tree6.8ms 30.8% 35.0%
Tree150.8ms 29.9% 34.2%
SAT.8ms 30.2% 35.3%
CNC 28.0% 32.7%

Table 4. Results on the RT-04S development set, IPM con-
dition, CNC is between the last three passes

Comparing CNC results of both segmentations in table
4, it is clear that segmentation is one of the IPM condition’s
main problems. This lies mainly in the number of deletion
errors, which increases from 9.8% to 14.7%. Processing re-
sulted in a real-time factor (RTF) of 173 on 3GHz Intel Pen-
tium4 machines with Hyper-Threading enabled under Linux
(2 jobs per processor).

6.2. Single Distant Microphone (SDM) Condition

The following acoustic models were tested on the SDM mi-
crophone condition:

PLAIN Merge-and-Split training followed by Viterbi (2i)
on the Close-talking data only, no VTLN

SAT/CAT Extra 4i Viterbi training on the distant data, no
VTLN

SAT/CAT-VTLN ≡ SAT/CAT, but trained with VTLN

Processing time was≈84h, resulting in a real-time fac-
tor (RTF) of 56. Every single decoding pass runs with RTF
< 20 (also for the MDM case).

6.3. Multiple Distant Microphone (MDM) Condition

The decoding and adaptation strategy for the MDM condi-
tion uses the same models as for the SDM case, but after
every decoding step, CNC was performed over all available
channels. Overall, processing resulted in a RTF of≈259.

Models Segmentation
Manual SDM-SEG (T2)

PLAIN 59.5% 60.8%
SAT/CAT 53.2% 55.2%
SAT/CAT-VTLN 48.9% 53.1%
CNC 47.8% 51.5%

Table 5. Results on the RT-04S development set, SDM con-
dition, CNC is between the last two passes

Models Segmentation
Manual SDM-SEG (T2)

PLAIN 53.4% (59.8%) 54.4% (60.8%)
SAT/CAT 46.6% (50.7%) 48.5% (51.9%)
SAT/CAT-VTLN 43.3% (47.7%) 45.5% (51.5%)
Multi-pass CNC 42.8% 45.0%

Table 6. Results on the RT-04S development set, MDM
condition; the number in brackets is the performance of a
single channel (#1) without CNC

6.4. RT04-S Evaluation Results

ISL’s submissions to the “sttul” condition of the RT-04S
Meeting STT evaluation reached a word error rate of 35.7%
for the IPM, 49.5% for the SDM, and 45.2% for the MDM
condition. To investigate the influence of improved speaker
segmentation and clustering on STT performance, the fol-
lowing table compares STT performance with the “T2” seg-
mentation with that based on the submitted MDM segmen-
tation, which uses information from multiple channels and
reaches a segmentation score of 28.17% compared to 52.54%.
However, this segmentation only became available for ASR
experiments after the evaluation deadline.

Models Segmentation
SDM-SEG (T2) MDM-SEG

PLAIN 55.4% 53.7%
SAT/CAT 49.9% 48.1%
SAT/CAT-VTLN 47.6% 45.4%
Multi-pass CNC 45.2% 44.5%

Table 7. Results on the RT-04S evaluation set, MDM con-
dition; results with CNC of all available channels. The uni-
fication and smoothing of the segmentation across channels
results in lower WERs already for the non-adapted case

The distribution of errors across different meetings and
the meeting sites as well as their relation with number of
channels and number of speaker clusters generated by the
automatic segmentations are shown in table 8.



Meeting # # SDM-SEG MDM-SEG
Site CHNS SPKS # S WER # S WER

CMU 1 6/4 2/2 47.4% 3/3 46.7%
ICSI 4 (HQ) 7/7 1/3 37.6% 3/4 33.7%
LDC 9/5 3/3 2/4 47.8% 3/2 48.8%
NIST 7 6/7 1/2 44.7% 3/3 43.8%

Table 8. Distribution of errors across the RT-04S Meeting
evaluation set (MDM case, 2 meetings per site). Different
segmentation algorithms hypothesize a different number of
speakers, which has a large influence on the performance of
adaptation

7. CONCLUSIONS

While these experiments, performed within the RT-04S eval-
uation framework, are non-exhaustive by far, the results pre-
sented in this paper demonstrate a significant improvement
over previous “Meeting” speech recognition systems, par-
ticularly when using multiple distant microphones not ar-
ranged as a microphone array.

A closer analysis of system errors is currently being car-
ried out, but it is clear that speaker segmentation and clus-
tering plays a vital role in improving the performance of
adaptation on this type of data; in the SDM case, VTLN
works significantly less well with automatic segmentation
than with manual segmentation, while CNC can compen-
sate some of the loss. Other approaches to channel com-
bination (more suitable for systems with constrained real-
time requirements) will also be investigated. To further im-
prove segmentation, we are therefore planning to use the
present speech recognition system in multi-modal rooms,
which could combine acoustic and visual evidence with con-
text information, to improve segmentation and adaptation.
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